МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Алтайский государственный педагогический университет» (ФГБОУ ВО «АлтГПУ»)

УТВЕРЖДАЮ проректор по образовательной деятельности

М.О. Тяпкин

Информационные системы

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Теоретических основ информатики

Учебный план zMиИ44.03.05-2024.plx

44.03.05 Педагогическое образование (с двумя профилями подготовки)

Квалификация бакалавр

Форма обучения заочная

Общая трудоемкость 3 ЗЕТ

 Часов по учебному плану
 108
 Виды контроля на курсах:

 в том числе:
 зачеты с оценкой 4

 аудиторные занятия
 12

 самостоятельная работа
 84

 часов на контроль
 4

УП: zMиИ44.03.05-2024.plx ctp. 2

Программу составил(и):

старший преподаватель, Москаленко Елена Валерьевна _____

Рабочая программа дисциплины

Информационные системы

разработана на основании ФГОС ВО - бакалавриат по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки) (приказ Минобрнауки России от 22.02.2018 г. № 125)

составлена на основании учебного плана 44.03.05 Педагогическое образование (с двумя профилями подготовки) (Уровень: бакалавриат; квалификация: бакалавр), утвержденного Учёным советом ФГБОУ ВО «АлтГПУ» от 25.03.2024, протокол № 10.

Рабочая программа одобрена на заседании кафедры

Теоретических основ информатики

Протокол № 6 от 27.02.2024 г.

Срок действия программы: 2024-2030 уч.г. Зав. кафедрой Тумбаева Наталья Викторовна

Распределение часов дисциплины по курсам

Курс	4		Итого	
Вид занятий	УП	РΠ	ИТОГО	
Лекции	4	4	4	4
Лабораторные	8	8	8	8
Контроль самостоятельной работы	8	8	8	8
Итого ауд.	12	12	12	12
Контактная работа	20	20	20	20
Сам. работа	84	84	84	84
Часы на контроль	4	4	4	4
Итого	108	108	108	108

11 HE TH	OCDOPHIA	ДИСШИПЛИНЫ	
	ии киния		

1.1.1 формирование теоретических знаний в области управления, хранения и обработки данных, а также практических навыков по проектированию и реализации систем хранения и обработки данных.

	1.2. ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)		
1.2.1	выявить особенности развития концепции проектирования баз данных;		
1.2.2	рассмотреть этапы проектирования баз данных;		
1.2.3	рассмотреть модель «Сущность-связь» и реляционную модель;		
1.2.4	разработать базу данных в рамках реляционной модели;		
1.2.5	рассмотреть возможности языка SQL по работе с данными в реляционными БД.		

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ		
I	икл (раздел) ОП:		
2.1	1 Требования к предварительной подготовке обучающегося:		
2.1.1	Технологии цифрового образования		
2.1.2	Теоретические основы информатики		
2.1.3	Программирование		
2.1.4	4 Иностранный язык		
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:		
2.2.1	Выполнение и защита выпускной квалификационной работы		
2.2.2	Подготовка к сдаче и сдача государственного экзамена		
2.2.3	Информационная безопасность и защита информации		
2.2.4	Веб-технологии		

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ПК-1.1: Знает структуру, состав и дидактические единицы предметной области (преподаваемого предмета).

 Π К-1.2: Умеет осуществлять отбор учебного содержания для его реализации в различных формах обучения в соответствии с требованиями Φ ГОС OO.

В результате освоения дисциплины (модуля) обучающийся должен

3.1	Знать:
3.1.1	основные подходы к построению реляционных моделей предметных областей;
3.1.2	основы языка SQL;
3.1.3	программный инструментарий работы с базами данных.
3.2	Уметь:
3.2.1	проектировать структуру баз данных в рамках реляционной модели;
3.2.2	применять язык SQL для решения задач обработки данных.
3.3	Владеть:
3.3.1	навыками поиска и отбора необходимой информации для постановки и решения исследовательских задач в области образования.

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)				
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература
	Раздел 1. Проектирование информационных систем				
1.1	Понятие информационных системы их назначение и базовая терминология. /Ср/	4	2	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.5Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
1.2	Инфологическое проектирование. Модель сущность-связь /Лек/	4	1	ПК-1.1	Л1.1 Л1.4 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5

1.2	Tr. 1	1 4	1	THC 1.1	H1 1 H1 2 H1 2 H1 4 H1 5 H1 4 H2 1
1.3	Инфологическое проектирование. Модель сущность-связь /Лаб/	4	1	ПК-1.1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
1.4	Инфологическое проектирование. Модель сущность-связь /Ср/	4	16	ПК-1.1	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
1.5	Даталогическое проектирование. Реляционная модель данных. /Лек/	4	1	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
1.6	Даталогическое проектирование. Реляционная модель данных. /Лаб/	4	2	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
1.7	Даталогическое проектирование. Реляционная модель данных. /Ср/	4	2	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
1.8	Проектирование структуры базы данных. /Ср/	4	1	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
1.9	Проектирование структуры базы данных. /Лаб/	4	2	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
1.10	Проектирование структуры базы данных. /Ср/	4	2	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.2
	Раздел 2. Язык структурированных запросов SQL				
2.1	Структура языка SQL. /Лек/	4	1	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
2.2	Структура языка SQL. /Ср/	4	18	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
2.3	Выборка данных. Однотабличные запросы. /Лек/	4	1	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
2.4	Выборка данных. Однотабличные запросы. /Лаб/	4	1	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6
2.5	Выборка данных. Однотабличные запросы. /Ср/	4	24	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
2.6	Выборка данных. Многотабличные запросы. /Лаб/	4	2	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
2.7	Выборка данных. Многотабличные запросы. /Ср/	4	19	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
2.8	ЗаО /ЗачётСОц/	4	4	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6Л2.1 Л2.2 Л2.3 Л2.4 Л2.5
				1.2	312.2 312.3 312.1 312.3

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Перечень индикаторов достижения компетенций, форм контроля и оценочных средств

ИПК - 2.1. Владеет содержанием предметных областей в соответствии с образовательными программами

Знать: содержание, сущность, закономерности, принципы и особенности изучаемых явлений и процессов, базовые теории в предметных областях.

Уметь: использовать базовые предметные научно-теоретические подходы к сущности, закономерностям, принципам и особенностям изучаемых явлений и процессов.

Владеть: навыками использования базовых предметных научно-теоретических подходов к сущности, закономерностям, принципам и особенностям изучаемых явлений и процессов для решения профессиональных задач.

ИПК - 2.2. Анализирует базовые научно-теоретические подходы к сущности, закономерностям, принципам и особенностям изучаемых явлений и процессов в предметных областях

5.2. Технологическая карта достижения индикаторов

ИПК - 2.1.

ИПК - 2.2. Лекционные занятия Вопросы для самоконтроля 15

ИПК - 2.1.

ИПК - 2.2. Лабораторные занятия Лабораторные работы 45

ИПК - 2.1.

ИПК - 2.2. Контрольный срез Тестовые задания Доклады 20

ИПК - 2.1.

ИПК - 2.2. Экзамен Вопросы для итогового контроля 20

Всего 100

5.3. Формы контроля и оценочные средства

3.1. Тематика лабораторных работ

1. Проектирование баз данных

Спроектировать базу данных со степенью нормализации не ниже Второй нормальной формы. В отчет включить: ERдиаграмму, описание связей и отношений, обоснование того или иного решения. Примеры предметных областей:

- Сеть кинотеатров.
- Туристическая фирма.
- Фотографии в социальных сетях.
- Каталог товаров.
- Запись на прием в поликлинику.
- Трамвайное депо.
- Автоматические камеры фиксации нарушений ПДД.
- Call-центр аварийной службы 112.
- Мессенджер.
- Организация сетевого маркетинга.
- и т.д.

2. Создание реляционной базы данных

Реализовать спроектированную базу данных в клиент-серверной СУБД. Заполнить тестовыми данными. В отчет включить скрипты создания таблиц и внесения данных.

3. Изучение базовых возможностей языка SQL

Необходимо подключиться к тестовой базе данных «студенты» на сервере в локальной сети либо создать базу данных из предоставленного скрипта. Затем выполнить последовательность запросов, выводящие требуемые данные в строгом соответствии с описанием:

XXX – номер группы

NNNN – номер зачетки

ФИО – первые буквы фамилии, имени и отчества

ДД – день в дате

ММ – месяц в

дате ГГГГ- год в дате

YY – число полных лет

БОЛЬШИЕ и маленькие буквы так же как в примере

Вариант №1.

1. Вывести данные о студентах в предоставленном формате.

«Фамилия И.О.», «группа№ XXX»

2. Сколько человеку полных лет?

«Фамилия (гр.ХХХ)», «дата рождения», «<число полных лет> лет»

- 3. Сколько уникальных фамилий студентов?
- 4. Выведите студентов XXX группы.

«Фамилия Имя Отчество», «XXX гр.»

5. Вывести список студентов мужского пола, у которых имя и фамилия начинаются на одну букву.

«Фамилия Имя XXX гр.»

6. Вывести информацию о студентах и их росте. Категория роста определяется по следующим правилам:

меньше 155 см – «низкий» от 155 до 185 см – «средний»

больше 185 см – «высокий»

«Фамилия И.О.», «<рост>», «<категория роста>»

Вариант №2.

1. Вывести данные о студентах в предоставленном формате.

«ФАМИЛИЯ», «NNNN и.о.», «группа№ XXX»

2. В какой день недели человек родился.

«Фамилия Имя», «дата рождения», «родился в <день недели даты рождения>»

- 3. Сколько уникальных имен студентов?
- 4. Выведите студентов с фамилиями в списке между «Ивановым» и «Петровым».

«ДХХХ «СО.И ВИПИМАФ»

5. Вывести список студенток 1991 года рождения у которых отчество не соответствует полу.

«Фамилия Имя Отчество», «ГГГГ года рождения.»

6. Вывести информацию о студентах и их весе. Категория веса определяется по следующим правилам:

меньше 51 кг – «недостаточный» от 52 до 90 кг – «средний»

больше 90 кг – «избыточный»

«Фамилия (XXX гр.)», «<вес> кг», «<категория веса>»

Вариант №3.

1. Вывести данные о студентах в предоставленном формате.

«Фамилия ИМЯ ХХХ гр.»

2. В каком месяце человек родился.

«Имя Отчество», «родился в <месяц рождения> месяце», «дата рождения»

- 3. Сколько раз студентов сдало хотя бы один экзамен?
- 4. Выведите преподавателей кафедры ТОИ с фамилиями.

«ФАМИЛИЯ И.О.», <дата рождения>

5. Вывести список студентов мужского пола 31 мая 2012 года возраст которых будет составлять от 21 до 23 лет.

«Фамилия И.О.», «<дата рождения>», «ҮҮ»

6. Вывести информацию о студентах и длине их имени. Категория длинны имени определяется по следующим правилам:

меньше 6 букв – «короткое» от 6 до 9 букв – «среднее» больше 9 букв –

«длинное»

«Имя Фамилия (XXX гр.)», «длинна имени», «категория длинны имени»

Вариант №4.

1. Вывести данные о студентах в предоставленном формате.

«фамилия», «ФИОNNNN»

2. Каков возраст человека в неделях

«ФАМИЛИЯ И.О.», «<возраст в неделях> недель»

- 3. Сколько уникальных отчеств студентов?
- 4. Выведите номера групп 1-го и 3- го курсов.

«XXX», «<Номер курса>»

5. Вывести список студентов мужского пола, которые родились в пятницу 13 числа.

«Фамилия Имя группа XXX», «<дата рождения>», «<день недели>»

6. Вывести информацию о студентах и длине их фамилии. Категория длинны фамилии определяется по следующим правилам:

меньше 5 букв – «короткая» от 5 до 7 букв – «средняя»

больше 7 букв -

«длинная»

«Фамилия Имя (гр. XXX)», «<длина фамилии>», «<категория длинны фамилии>»

4. Изучение агрегатных функций языка SQL

Необходимо подключиться к тестовой базе данных «студенты» на сервере в локальной сети либо создать базу данных из предоставленного скрипта. Затем выполнить последовательность запросов, выводящие требуемые данные в строгом соответствии с описанием:

XXX – номер группы

NNNN – номер зачетки

ФИО – первые буквы фамилии, имени и отчества

ДД – день в дате

MM – месяц в

датеГГГ- год в дате

YY – число полных лет

БОЛЬШИЕ и маленькие буквы так же как в примере

вариант №1

- 1. Выведите количество человек и средний рост по всем студенческим группам. Назовите самую рослую группу. «группа№ XXX», «<кол-во студентов>», «<средний рост>»
- 2. Выведите количество студентов мужского пола, родившихся в тот или иной день недели, определите их средний рост и вес. Назовите самый низкорослый день

недели.

«<день недели>», «<кол-во студентов>», «<средний рост>», «<средний вес>»

3. Выведите распределение студентов по полу и весу в десятках кг.

вариант №2

1. Выведите количество студентов, носящих одно имя, и определите рост самого высокого представителя носящего то или иное имя. Назовите имя самого низкорослого студента.

«Имя», «<кол-во студентов>», «<максимальный рост>»

- 2. Выведите количество студенток, родившихся в тот или иной день месяца, определите их максимальный рост и минимальный вес. Назовите день когда родилось максимальное количество студентов. «<день месяца>», «<кол-во студентов>», «<макс. рост>», «<мин. вес>»
- 3. Выведите распределение студентов по полу и росту в десятках см.

вариант №3

1. Выведите количество студентов носящих одну фамилию и выведите суммарный вес всех представителей той или иной фамилии. Назовите самую «весомую» фамилию.

«ФАМИЛИЯ», «<кол-во студентов>», «<суммарный вес>»

- 2. Выведите количество студентов ростом ниже 170 см родившихся в тот или иной год, определите их средний рост и максимальный вес. Назовите год когда родилось минимальное количество студентов. «<год>», «<кол-во студентов>», «<средний рост>», «<макс. вес>»
- 3. Выведите распределение студентов по учебной группе и росту в десятках см.

вариант №4

1. Выведите количество студентов носящих одно отчество и выведите суммарный рост всех носящих одно

```
отчество. Назовите самое «легкое» отчество.
«отчество», «<кол-во студентов>», «<суммарный рост>»
2. Выведите количество студентов с весом между 55 и 80 кг родившихся в тот или иной месяц, определите их
максимальный рост и средний вес. Назовите месяц когда родился самый высокий студент.
«<месяц>», «<кол-во студентов>», «<макс. рост>», «<средний вес>»
3. Выведите распределение студентов по учебной группе и весу в десятках кг.
5. Изучение многотабличных запросов в языке SQL
Необходимо подключиться к тестовой базе данных «студенты» на сервере в локальной сети либо создать базу данных из
предоставленного скрипта. Затем выполнить последовательность запросов, выводящие требуемые данные в строгом
соответствии с описанием:
Вариант №1.
7. Вывести список студентов 2-го курса в предоставленном формате.
«Фамилия И.О.»
«<номер курса>»
«(<код специальности>) <название специальности>»
«<число полных лет> лет»
8. Вывести список оценок одного студента в предоставленном формате.
«Фамилия И.О. <номер группы>»
«<экзамен>( <семестр экзамена> семестр)»
«<оценка>»
«<Дата получения оценки>»
9. Выведите статистическую информацию об экзаменах выбранной специальности.
«<наименование экзамена>»
«<семестр>»
«<количество человек сдававших экзамен>»
«<средний балл>»
Вариант №2.
1. Вывести список преподавателей ИФМО предоставленном формате.
«Фамилия Имя Отчество»,
«<краткое название кафедры>»,
«<ученая степень>
«<возраст>»
2. Вывести список экзаменов по выбранной специальности в предоставленном формате.
« <Специальность> (<Код ОКСО>)»
« < Название экзамена>»
«<семестр экзамена>»
«<ФИО преподавателя>»
3. Выведите статистическую информацию об успеваемости некоторой группы.
«Фамилия И.О. XXX гр.»,
«<Количество сданных экзаменов>»
«<Средний балл >»
«<количество оценок 5>»
Вариант №3.
1. Вывести список групп ИФМО предоставленном формате.
«<группа>»
«<факультет>»
«<специальность> (<код ОКСО>)»
«<возраст>»
4. Вывести список экзаменов по выбранной специальности в предоставленном формате.
«<Специальность> (<Код ОКСО>)»
«< Название экзамена>»
«<семестр экзамена>»,
«<ФИО преподавателя>»
2. Выведите статистическую информацию по специальностям ИФМО.
«<Специальность> (<Код ОКСО>)»,
«<факультет>»
«<количество групп>»
«<количество студентов, обучающихся по специальности>»
```

Вариант №4. 1. Вывести список преподавателей ИФМО предоставленном формате.
«Фамилия И. О.», «<краткое название кафедры>»,
«<ученая степень>»
«<возраст>»
2. Вывести список экзаменов по выбранной специальности в предоставленном формате. «<Специальность> (<Код ОКСО>)» «<семестр экзамена>»
«<Название экзамена»»
«-пазвание экзамена-» «-ФИО преподавателя>»
3. Выведите статистическую информацию об успеваемости некоторой группы студентов. «Фамилия И.О. XXX гр.» «<Количество сданных экзаменов>»
«-Средний балл>»
«<количество оценок 4>»
3.2. Примеры тестовых заданий 1. В модели выделяют следующие типы взаимосвязей
□ один к нескольким
\Box + один к одному \Box + один ко многим
□ - несколько к нескольким
☐ + MHOFUE KO MHOFUM
□ - несколько ко многим2. Поименованная характеристика сущности называется:
 □ + атрибутом
□ - описателем
□ - представителем
□ — полем □ — полем
 Для определения связей между отношениями в реляционной базе данных используются ссылки
□ - ссылки □ - указатели
□ + внешние ключи
🗆 - таблицы связей
4. Расставьте в правильной последовательности нормальные формы
☐ 1 первая нормальная форма
□ 2 вторая нормальная форма□ 3 третья нормальная форма
 □ 3 третья нормальная форма □ 4 нормальная форма Бойса-Кодда
 □ 5 четвертая нормальная форма
□ 6 нормальная форма проекции-соединения
5. Язык DDL (Data Definition Language) предназначен для
 □ + определения структур базы данных и управления доступом к данным □ - изменения полей таблиц
 □ - выполнения запросов на выборку данных из таблиц
□ - выборки и обновления данных6. Для создания таблицы используется оператор SQL
о. для создания таолицы используется оператор SQL
□ - DELETE TABLE
□ - REMOVE TABLE □ - NEW TABLE
□ - ALTER TABLE
7. Обязательными предложениями оператора SELECT являются: □ + SELECT
□ + FROM
□ - WHERE
□ - GROUP BY
□ - HAVING
- ORDER BY
8. В разделе WHERE задаются

 + условия отбора строк или условия соединения кортежей результирующего отношения
 - условия отбора строк в таблице
□ - предикат-условия объединения
□ - перечисление таблиц для объединения
9. Агрегатная функция COUNT возвращает
🗆 + количество строк или непустых значений полей, которые выбрал запрос
🗆 - количество строк, которые выбрал запрос, включая неопределенные значения полей
□ - среднее арифметическое всех выбранных значений
□ - количество полей составляющих результирующее отношение
10. При использовании технологии "клиент-сервер" логика представления данных располагается на
□ + на клиенте
□ - на сервере
□ - на промежуточном сервере приложений
□ - отсутствует
3.3. Вопросы для самоконтроля:

- 1. Распределенные и централизованные базы данных. Архитектура файл-сервер. Ар-хитектура клиент-сервер.
- 2. Иерархическая и сетевая модели данных.
- 3. Реляционная модель данных. История развития. Основные понятия (тип данных, домен, отношение, кортеж, атрибут, ключ).
- 4. Реляционная база данных.
- 5. Функции системы управления базами данных (СУБД): управления данными во внешней памяти, управление буферами оперативной памяти, управление транзак-циями.
- 6. Функции системы управления базами данных: журнализация, поддержка языковбаз данных.
- 7. Типовая организация современной СУБД.
- 8. Базовые средства манипулирования реляционными данными.
- 9. Реляционная алгебра. Общая интерпретация реляционных операций.
- 10. Особенности теоретико-множественных операций реляционной алгебры.

3.4. Тематика докладов:

- 1. Базы данных: понятие, примеры, классификация.
- 2. Модель данных: понятие, примеры, типы, схемы.
- 3. Связи в моделях данных: типы, схемы, примеры.
- 4. Сущность: понятие, типы, источники информации о сущностях.
- 5. Ключи и реляционный подход к построению модели: понятие ключ, классификация, назначение, примеры, суть подхода.
- 6. Требования, предъявляемые к проектируемой базе данных.
- 7. Суть теоретической разработки базы данных.
- 8. Этапы проектирования базы данных.
- 9. Системы управления базами данных: понятие, назначение, функции, классификация, отличительные особенности.
- 10. Основные компоненты и типы данных системы управления базами данных.
- 11. Алгоритм проектирования базы данных.
- 12. Способы и алгоритм создания таблиц базы данных.
- 3.5. Вопросы для промежуточной аттестации по дисциплине (экзамен)
- 1. Назначение и состав информационных систем. Определение ИС.
- 2. Функции информационных систем.
- 3. Моделирование реальности в информационных системах.
- 4. Классификация моделей данных.
- 5. Состав и архитектура информационных систем.
- 6. Архитектура персональных баз данных.
- 7. Архитектура файл-сервер.
- 8. Архитектура клиент-сервер.
- 9. Многоуровневые архитектуры информационных систем.
- 10. Назначение и основные функции СУБД. Основные продукты на рынке.
- 11. Основные понятия модели сущность-связь.
- 12. Модель сущность-связь. Свойства сущностей.
- 13. Модель сущность-связь. Связи между сущностями.
- 14. Модель сущность-связь. Ключи сущностей.
- 15. Основные понятия реляционной модели данных.
- Реляционная модель. Первичные ключи отношений.
 Реляционная модель. Реализация связей через внешние ключи.
- 18. Реляционная модель. Обеспечение целостности данных.
- 16. Геляционная модель. Обеспечение целостности данных.
- 19. Сходства и различия реляционной модели и модели сущность-связь.
- 20. Нормализация данных: цели и задачи.

- 21. Приведение баз данных к требуемому уровню нормальной формы.
- 22. Нормализация данных. Первая нормальная форма.
- 23. Нормализация данных. Вторая нормальная форма.
- 24. Нормализация данных. Третья нормальная форма.
- 25. Трехуровневая архитектура баз данных ANSI/SPARC.
- 26. Этапы проектирования баз данных.
- 27. Язык SQL. Историческая справка и стандарты.
- 28. Язык SQL. Структура языка. Подмножества DDL, DML, DCL, TCL.
- 29. Операторы подмножества DDL (data definition language).
- 30. Операторы подмножества DML (data manipulation language).
- 31. Операторы подмножества DCL (data control language).
- 32. Операторы подмножества TCL (transaction control language).
- 33. Понятие транзакции.
- 34. Язык SQL. Типы данных и операции с ними.
- 35. Операторы Insert, Update, Delete.
- 36. Оператор Select: общий синтаксис.
- 37. Оператор Select: предложение SELECT.
- 38. Оператор Select: предикат-условия, фильтрация данных.
- 39. Оператор Select: агрегатные функции и группировка.
- 40. Оператор Select: многотабличные запросы.
- 41. Понятие об индексах. Назначение и способы организации.
- 42. Задача администрирования баз данных.

5.4. Оценка результатов обучения в соответствии с индикаторами достижения компетенций

Неудовл.: не достигнут

Удовл. Пороговый уровень: частично сформированы знания, умения и навыки в области основ проектирования локальных вычислительных сетей, в области сетевых стандартов представления информации и протоколов передачи данных; на базовом уровне сформированы знания и практические навыки, позволяющие проектировать локальные компьютерные сети; обучающийся обладает знаниями только основного материала, но не усвоил его деталей, допускает неточности, демонстрирует недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.

Хорошо. Базовый уровень: в достаточном объёме сформированы знания, умения и навыки в области основ проектирования и создания локальных вычислительных сетей, в области сетевых стандартов представления информации и протоколов передачи данных и принципов их использования для объединения в единое целое разнородных информационных ресурсов; частично сформированы знания и практические навыки, позволяющие проектировать локальные компьютерные сети; обучающийся в достаточной степени знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос или выполнении заданий, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.

Отлично. Высокий уровень: сформированы в полной мере знания, умения и навыки в области основ проектирования и создания локальных вычислительных сетей, в области сетевых стандартов представления информации и протоколов передачи данных и принципов их использования для объединения в единое целое разнородных информационных ресурсов, а также техническими и программными средствами, обеспечивающими их работу; в полном объёме сформированы знания и практические навыки, позволяющие проектировать локальные компьютерные сети; обучающийся глубоко и прочно освоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал научной литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задача.

	6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)					
	6.1. Рекомендуемая литература					
	6.1.1. Основная литература					
	Авторы, составители	Издание	Экз.			
Л1.1	С. А. Жданов, М. Л. Соболева, А. С. Алфимова	Информационные системы: учебник — Москва ; Прометей, 2015 — URL: http://www.iprbookshop.ru/58132.html	9999			
Л1.2	А. С. Дорофеев, Р. С. Дорофеев, С. А. Рогачева, С. С. Сосинская	Разработка баз данных: учебное пособие — Саратов : Ай Пи Эр Медиа, 2018 — URL: http://www.iprbookshop.ru/70276.html	9999			
Л1.3	С. Д. Кузнецов	Введение в модель данных SQL: учебное пособие — Москва: Национальный Открытый Университет "ИНТУИТ": Ай Пи Ар Медиа, 2021 — URL: http://www.iprbookshop.ru/101995.html	9999			
Л1.4	А. И. Стешин	Информационные системы в организации: учебное пособие — Саратов : Вузовское образование, 2019 — URL: http://www.iprbookshop.ru/79629.html	9999			

	Авторы, составители	Издание	Экз.		
Л1.5	В. Н. Кучуганов, А. В. Кучуганов	Информационные системы: методы и средства поддержки принятия решений: учебное пособие — Москва: Ай Пи Ар Медиа, 2020 — URL: http://www.iprbookshop.ru/97179.html	9999		
Л1.6	А. В. Суханов, М. Н. Королева, З. В. Лященко	Интеллектуальные информационные системы: учебное пособие — Ростов-на- Дону: РГУПС, 2021 — URL: https://e.lanbook.com/book/220130	9999		
		6.1.2. Дополнительная литература			
	Авторы, составители	Издание	Экз.		
Л2.1	А. С. Грошев	Основы работы с базами данных: учебное пособие — Москва : Национальный Открытый Университет "ИНТУИТ" : Ай Пи Ар Медиа, 2021 — URL: http://www.iprbookshop.ru/102038.html	9999		
Л2.2	С. Д. Кузнецов	Введение в реляционные базы данных: учебное пособие — Москва: Национальный Открытый Университет "ИНТУИТ": Ай Пи Ар Медиа, 2021 — URL: http://www.iprbookshop.ru/102002.html	9999		
Л2.3	А. Н. Петрова, В. Е. Степаненко	Реализация баз данных: учебное пособие — Комсомольск-на-Амуре, 2020 — URL: http://www.iprbookshop.ru/102100.html	9999		
Л2.4	М. Ф. Ванина, А. Г. Ерохин	Распределенные информационные системы. Технологии реализации распределенных информационных систем: учебное пособие — Москва: Московский технический университет связи и информатики, 2020 — URL: http://www.iprbookshop.ru/97362.html	9999		
Л2.5	К. Фиайли ; пер. с англ.: А. В. Хаванов	SQL — Саратов : Профобразование, 2019 — URL: http://www.iprbookshop.ru/87984.html	9999		
	6.2. Переч	нень ресурсов информационно-телекоммуникационной сети "Интернет"			
Э1	Информационные систе	емы и базы данных, 3О, Бакалавриат, № 3, Москаленко Елена Валерьевна			
		6.3.1 Перечень программного обеспечения			
6.3.1.1	Пакет Microsoft Office				
6.3.1.2	Операционная система	семейства Windows			
6.3.1.3	.3 Пакет Kaspersky Endpoint Security 10 for Windows				
6.3.1.4	.4 Интернет браузер				
		6.3.2 Перечень информационных справочных систем			
6.3.2.1	Электронная библиоте библиотека	ка НПБ / Алтайский государственный педагогический университет, Научно-педагоги	ческая		
	·	ая электронная библиотека			
6.3.2.3	Цифровой образовател	ьный ресурс IPR Smart / Ай Пи Ар Медиа			

	7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
7.1	Оборудованные учебные аудитории, в том числе с использованием видеопроектора и подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду Университета.
	Аудитории для самостоятельной работы с подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду Университета.
7.3	Компьютерный класс с подключением к сети «Интернет» и доступом в электронную информационно- образовательную среду Университета.

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

техническими средствами и получить достаточные практические навыки в работе с программными средствами, используемыми при выполнении лабораторных работ по курсу. Особое внимание должно быть уделено изучению типовых задач работы с информацией в компьютерных сетях.

Лабораторные работы выполняются студентов в составе 1 человека по каждому индивидуальному проектному заданию. Подготовка к следующей лабораторной работе должна производиться в урочное время с использованием электронного учебника.

В течении времени, отведенного по расписанию, студенты получают от преподавателя индивидуальное задание, изучают теоретическую часть, соответствующую выполняемой работе, знакомятся с образцовой задачей и на ее основе выполняют индивидуальное задание по принципу подобия и по «нарастанию» нового материла. По итогам лабораторных работ готовится отчет.

Методические рекомендации обучающимся с ограниченными возможностями здоровья (ОВЗ) Специальные условия обучения в АлтГПУ определены «Положением об инклюзивном образовании» (утверждено /П; zMиИ44.03.05-2024.plx ctd. 12

приказом ректора от 25.12.2015 г. № 312/1п). Данным «Положением» предусмотрено заполнение студентом при зачислении в университет анкеты «Определение потребностей обучающихся в создании специальных условий обучения», в которой указываются потребности лица в организации доступной социально-образовательной среды и помощи в освоении образовательной программы.

Под специальными условиями для получения образования обучающимися с ограниченными возможностями здоровья понимаются условия обучения, воспитания и развития, включающие в себя использование специальных образовательных программ и методов обучения и воспитания, специальных учебников, учебных пособий и дидактических материалов, специальных технических средств обучения коллективного и индивидуального пользования.

Построение образовательного процесса ориентировано на учет индивидуальных возрастных, психофизических особенностей обучающихся, в частности предполагается возможность разработки индивидуальных учебных планов. Реализация индивидуальных учебных планов сопровождается поддержкой тьютора (родителя, взявшего на себя тьюторские функции в процессе обучения, волонтера).

Обучающиеся с OB3, как и все остальные студенты, могут обучаться по индивидуальному учебному плану в установленные сроки с учетом индивидуальных особенностей и специальных образовательных потребностей конкретного обучающегося. Срок получения высшего образования при обучении по индивидуальному учебному плану для лиц с ограниченными возможностями здоровья может быть при необходимости увеличен, но не более чем на год.

При составлении индивидуального графика обучения для лиц с ОВЗ возможны различные варианты проведения занятий: - проведение индивидуальных или групповых занятий с целью устранения сложностей в усвоении лекционного

материала, подготовке к семинарским занятиям, выполнению заданий по самостоятельной работе. Для лиц с OB3, по их просьбе, могут быть адаптированы как сами задания, так и формы их выполнения.

- выполнение под руководством преподавателя индивидуального проектного задания, позволяющего сочетать теоретические знания и практические навыки;
- применение мультимедийных технологий в процессе ознакомительных лекций и семинарских занятий, что позволяет экономить время, затрачиваемое на изложение необходимого материала и увеличить его объем;
- дистанционную форму индивидуальных консультаций, выполнения заданий на базе платформы «Moodle». Основным достоинством дистанционного обучения для лиц с ОВЗ является то, что оно позволяет полностью индивидуализировать содержание, методы, формы и темпы учебной деятельности инвалида, следить за каждым его действием и операцией при решении конкретных задач; вносить вовремя необходимые коррекции как в деятельность студента-инвалида, так и в деятельность преподавателя. Дистанционное обучение также позволяет обеспечивать возможности коммуникаций не только с преподавателем, но и с другими обучаемыми, сотрудничество в процессе познавательной деятельности (форум, вебинар, skype-консультирование). Эффективной формой проведения онлайн-занятий являются вебинары, которые могут быть использованы для проведения виртуальных лекций с возможностью сетевого взаимодействия всех участников дистанционного обучения.

Для осуществления процедур текущего контроля успеваемости и промежуточной аттестации преподаватели, в соответствии с потребностями студента, отмеченными в анкете, и рекомендациями специалистов дефектологического профиля, разрабатывает фонды оценочных средств, адаптированные для лиц с ограниченными возможностями здоровья и позволяющие оценить достижение ими запланированных в основной образовательной программе результатов обучения и уровень сформированности всех компетенций, заявленных в образовательной программе.

Форма проведения текущей аттестации для студентов с OB3 устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.). При необходимости лицам с OB3 может быть предоставлено дополнительное время для подготовки к ответу на зачете или экзамене, выполнения задания по самостоятельной работе.

Студент с ограниченными возможностями здоровья обязан:

- выполнять требования образовательных программ,
- предъявляемые к степени овладения соответствующими знаниями;
- самостоятельно сообщить в соответствующее подразделение по работе со студентами с OB3 о наличии у него подтвержденной в установленном порядке ограниченных возможностей здоровья, жизнедеятельности и трудоспособности (инвалидности) необходимости создания для него специальных условий.