МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Алтайский государственный педагогический университет»

УТВЕРЖДАЮ Проректор по образовательной деятельности С.П. Волохов

«24» апреля 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математические методы в реологии

Образовательная программа высшего образования — программа подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности:

1.1.9. Механика жидкости, газа и плазмы

Направленность программы (профиль): –

Уровень образования:

высшее образование – подготовка кадров высшей квалификации

Область науки:

1. Естественные науки

Группа научных специальностей:

1.1. Математика и механика

Форма обучения:

Очная

Объем дисциплины:

2 s.e.

Рабочая программа дисциплины составлена в соответствии с Федеральными государственными требованиями, утвержденными приказом Министерства науки и высшего образования Российской Федерации от 20.10.2021 № 951, паспортом научной специальности 1.1.9. Механика жидкости, газа и плазмы.

Рабочая программа дисциплины принята на заседании кафедры математики и методики обучения математике от «07» марта 2023 г. (протокол №7).

Составитель:

Пышнограй Григорий Владимирович, профессор кафедры математики и методики обучения математике

1. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цель: освоение аспирантами современных методов численного анализа, обучение аспирантов принципам конструирования вычислительных алгоритмов для решения современных проблем математической физики и формирование подходов к выполнению аспирантами исследований, связанных с работой над диссертацией.

Задачи:

- формирование базовых знаний в области численных методов, обеспечивающих технологические основы современных инновационных сфер деятельности;
- обучение аспирантов принципам конструирования вычислительных алгоритмов для решения современных проблем математической физики;
- формирование подходов к выполнению аспирантами исследований, связанных с работой над диссертацией.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ПРОГРАММЫ ПОДГОТОВКИ НАУЧНЫХ И НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ

Дисциплина «Методы частиц в гидродинамических сплошных средах» относится к дисциплинам по выбору вариативной части (элективным курсам) образовательного компонента программы подготовки научных и научно-педагогических кадров в аспирантуре. Шифр дисциплины в учебном плане 2.1.2.1.

Освоение данной дисциплины является необходимой основой для успешного освоения аспирантами последующих дисциплин, практики.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины аспирант должен:

знать:

- методологию, конкретные методы и приемы научно- исследовательской работы с использованием современных компьютерных технологий.
 Современные подходы, методы и модели, используемые при решении задач реологии;
- способы представления и методы передачи информации обучаемым;
- принципы математического моделирования. Способы описания динамических процессов в жидкостях, газе и плазме при различных внешних воздействиях;

- основные реологические характеристики с целью интерпретации наблюдений и экспериментов;
- интегральную (балансовую) и дифференциальную формы законов сохранения, законы термодинамики.

уметь:

- выдвигать гипотезы и предлагать пути их проверки. Делать выводы на основе натурных и экспериментальных данных, представленных в виде графика, таблицы или диаграммы;
- представлять математическую модель изучаемого явления или процесса с целью получения численного решения поставленной задачи. Строить замкнутые системы уравнений, описывающих поведение конкретной реологической системы, ставить для них краевые и начальные условия, выбирать способ решения поставленной задачи;
- осуществлять отбор материала, характеризующего достижения реологии с учетом специфики направления и направленности подготовки.

владеть:

- основами отбора учебного материала при обучении дисциплинам по профилю «Механика жидкости, газа и плазмы»;
- умением работы с различными средствами моделирования реологических систем;
- умением работать с экспертными системами и базами данных в области реологии;
- основами отбора учебного материала в образовательной деятельности.

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Вид учебной работы	Всего часов	Распределение часов по		
		годам обучения		Я
		1	2	3
Аудиторные занятия (всего)	8	8		
В том числе:				
Лекции (Л)	4	4		
Практические занятия (ПЗ)	4	4		
Самостоятельная работа (СР)	64	64		
Вид промежуточной				
аттестации: зачет				
Общая трудоемкость	72	72		
дисциплины:				

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

No	Наименование	Содержание раздела
	раздела	с одержини раздени
	дисциплины	
1.	Введение в	Становление реологии как науки. Отличие
	реологию	реологии от гидродинамики.
	полимерных сред	r
2.	Законы сохранения	Закон сохранения массы, закон сохранения
	в реологии текучих	импульса. Реологическое уравнение состояния.
	сред	31
3.	Реологические	Модель Максвелла. Линейный характер модели
	модели	Максвелла Реологические модели в
		интегральной и дифференциальной формах.
4.	Модель	Микроструктурный подход в реологии
	Виноградова-	полимеров. Уравнения динамики макромолекулы.
	Покровского	Осреднение. Реологическое определяющее
		соотношение Виноградова-Покровского.
5.	Линейная	Динамический модуль сдвига. Частотные
	вязкоупругость	зависимости компонент динамического модуля
		сдвига. Многомодовый характер.
6.	Нелинейные	Вискозиметрические течения. Зависимость
	эффекты при	стационарной сдвиговой вязкости от скорости
	простом сдвиге и	сдвига. Первая и вторая разности нормальных
	одноосном	напряжений. Вязкость при одноосном
	растяжении	растяжении. Установление вискозиметрических
		функций.
7.	Математическое	Метод LAOS в динамике полимерных сред.
	моделирование	Фигуры Лиссажу.
	сдвиговых	
	колебаний с	
	большой	
	амплитудой	
8.	Моделирование	Одномерное приближение при описании
	технологических	процессов формования полимерных пленок из
	процессов	растворов и расплавов полимеров
	переработки	
	полимеров	

Разделы дисциплины и виды занятий

$N_{\underline{0}}$	Наименование раздела	Л	П3	CPC	Всего
	дисциплины				

1.	Введение в реологию полимерных сред	0,5	0,5	2	3
2.	Законы сохранения в реологии текучих сред	0,5	0,5	8	9
3.	Реологические модели	1	1	14	16
4.	Модель Виноградова- Покровского	0,5	0,5	4	5
5.	Линейная вязкоупругость			4	4
6.	Нелинейные эффекты при простом сдвиге и одноосном растяжении	0,5	0,5	10	11
7.	Математическое моделирование сдвиговых колебаний с большой амплитудой	0,5	0,5	12	13
8.	Моделирование технологических процессов переработки полимеров	0,5	0,5	10	11
	Итого	4	4	64	72

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература Приложение

6.2. Дополнительная литература Приложение

6.3. Информационные, информационно-справочные системы и профессиональные базы данных

- 1. Электронно-Библиотечная Система IPRbooks ООО «Ай Пи Эр Медиа» http://www.iprbookshop.ru/.
- 2. Электронная библиотека $\Phi\Gamma$ БОУ ВО Алт Γ ПУ, Научно-педагогическая библиотека http://library.altspu.ru/elb.phtml.
- 3. Научная электронная библиотека eLIBRARY.RU OOO «Интра-центр+» http://elibrary.ru/.
- 4. Межвузовская электронная библиотека (МЭБ) http://icdlib.nspu.ru/.
- 6. Политематическая реферативно-библиографическая и наукометрическая (библиометрическая) база данных Web of Sceince https://apps.webofknowledge.com.
- 7. «Национальная электронная библиотека» ФГБУ «РГБ» http://нэб.рф.
- 8. Президентская библиотека имени Б. Н. Ельцина ФГБУ «Президентская библиотека имени Б.Н. Ельцина» https://www.prlib.ru/.

- 10. Ассоциация российских библиотечных консорциумов (АРБИКОН). Проект «Марс» (Межрегиональная аналитическая роспись статей) http://arbicon.ru/services/mars_analitic.html.
- 11. Реферативная и наукометрическая база данных «Scopus» ФГБУ «ГПНТБ» https://www.ncfu.ru/science/elektronnye-resursy/naukometricheskie-i-referativnye-bazy-dannyh/.

7. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

7.1. Для преподавателей:

Преподавателю следует иметь в виду, что освоение курса требует систематического изучения всех тем в той последовательности, в какой они указаны в программе.

Важно помнить, что аудиторные занятия помогают аспиранту овладеть программным материалом благодаря правильной расстановке преподавателем необходимых акцентов при изложении материала. Кроме того, во время аудиторных занятий имеет место прямой визуальный и эмоциональный контакт аспиранта с преподавателем, обеспечивающий более полную реализацию воспитательной компоненты обучения, в том числе на личном примере педагога (культура речи, манера одеваться, общаться со студентами и аудиторией в целом, и т.д.).

Преподавателю следует иметь в виду, что содержание занятий должно удовлетворять следующим дидактическим требованиям, обеспечивающим активную работу аспиранта и эффективное освоение им программного материала:

- логичности, четкости и ясности в изложении материала;
- последовательности изложения материала от простого к сложному, от известного к неизвестному;
 - проблемности (с широким привлечением диалога, дискуссии);
 - наглядности;
- связи с практикой и будущей профессиональной деятельностью аспиранта.

Преподавателю необходимо систематически контролировать результаты самостоятельной работы и учитывать их при аттестации аспиранта.

При проведении аттестации студентов важно помнить, что систематичность, объективность, аргументированность — главные принципы, на которых основаны контроль и оценка знаний. Проверка, контроль и оценка знаний аспиранта требуют учета его индивидуального стиля в осуществлении учебной деятельности. Знание критериев оценки знаний обязательно и для преподавателя, и для аспиранта.

7.2. Для аспирантов:

Освоение курса требует систематического изучения всех тем в той последовательности, в какой они указаны в программе.

Основными видами учебной работы является самостоятельная работа.

При самостоятельной работе следует использовать:

- учебно-методическую литературу из рекомендованного списка;
- ресурсы информационной поддержки учебного процесса.

Аспиранту необходимо помнить, что результаты самостоятельной работы контролируются преподавателем и учитываются при аттестации.

7.3. Рекомендации для обучающихся ОВЗ

Специальные условия обучения в АлтГПУ определены «Положением об инклюзивном образовании» (утверждено приказом ректора от 25.12.2015 г. № 312/1п).

1.

8. ТЕКУЩИЙ КОНТРОЛЬ И САМОСТОЯТЕЛЬНАЯ РАБОТА

8.1. Перечень вопросов или заданий для текущего контроля

Примерный перечень вопросов для текущего контроля:

- 1. Роль математического моделирования и численных методов в естественных науках. Принципы проведения вычислительного эксперимента.
 - 2. Этапы вычислительного эксперимента. Модель, алгоритм, программа.
- 3. Составление программы численных экспериментов, создание численно-экспериментальной модели, выполнение контрольных экспериментов, проведение серийных экспериментов, обработка экспериментальных данных и их интерпретация.
 - 4. Методы визуализации многомерных расчетов.
 - 5. Основные этапы развития реологии.
- 6. Основные этапы развития численного моделирования на примере математических методов в реологии полимерных систем.
 - 7. Моделирование как метод научного познания.
 - 8. Виды моделей.
 - 9. Функции моделирования.
 - 10. Методы моделирования.
 - 11. Моделирование и системный подход.
 - 12. Математическое моделирование.
 - 13. Особенности и области применения математического моделирования.
 - 14. Основные этапы моделирования.
 - 15. Требования к модели.

- 16. Построение математической, алгоритмической и программной модели исследуемой системы.
 - 17. Обработка и анализ результатов моделирования.
 - 18. Статистическая обработка результатов моделирования.
 - 19. Анализ и интерпретация результатов моделирования.
- 20. Методы исследования математических моделей. Устойчивость. Проверка адекватности математических моделей.

Примерный перечень заданий для текущего контроля:

- 1. Используя современные методы исследования и информационнокоммуникационные технологии, построить математическую, алгоритмическую и программную модель исследуемой системы.
- 2. Используя современные методы исследования и информационнокоммуникационные технологии, провести обработку и анализ результатов моделирования.
- 3. Показать готовность к преподавательской деятельности по основным образовательным программам высшего образования, изложив методы построения математических моделей на основе фундаментальных законов природы.
- 4. Показать готовность к преподавательской деятельности по основным образовательным программам высшего образования, проведя проверку адекватности математической модели.
- 5. Исследовать математическую модель Максвелла для описания параметров потоков движущихся сред.
- 6. Моделирование течения полимерного расплава в сходящемся канале с прямоугольным сечением.
- 7. Осуществить экспериментальные исследования технологических процессов, на примере процесса формирования полимерных пленок из расплава полимера.
- 8. Осуществить экспериментальные исследования стационарных вискозимертических функций при простом сдвиговом течении полимера.
- 9. Описать методы моделирования применительно к исследованию кинетических уравнений однородных и многофазных сред.
- 10. Продемонстрировать способность применять аналитические, асимптотические и численные методы в области визуализации многомерных расчетов.
- 11. Продемонстрировать готовность к преподавательской деятельности в области профессиональных дисциплин по профилю "Механика жидкости, газа

и плазмы", выявив требования к НИР аспиранта. Сформулировать цели и задачи, объект и предмет исследования.

12. Продемонстрировать готовность к преподавательской деятельности в области профессиональных дисциплин по профилю "Механика жидкости, газа и плазмы", выявив требования к выполнению исследования на тему «Подготовка презентации научного доклада». Сформулировать цели и задачи, объект и предмет исследования.

8.2. Перечень вопросов для самостоятельной работы

Примерный перечень вопросов для самостоятельной работы:

- 1. Формулировка уравнений динамики макромелекулы.
- 2. Модель Максвелла.
- 3. Модель Гизекуса.
- 4. Модель Виноградова-Покровского.
- 5. Математическое моделирование вискозиметрических функций.
- 6. Стационарные вискозимертические функции при простом сдвиге.
- 7. Стационарные вискозимертические функции при одноосном растяжении.
 - 8. Нестационарные вискозимертические функции при простом сдвиге.
- 9. Нестационарные вискозимертические функции при одноосном растяжении.
- 10. Реологические модели при описании технологических процессов, на примере процесса формирования полимерных пленок из расплава полимера.
- 11. Реологические модели при описании технологических процессов, на примере процесса формирования полимерных пленок из раствора полимера.
- 12. Моделирование течения полимерного расплава в сходящемся канале с прямоугольным сечением.

9. ПРОМЕЖУТОЧНЫЙ КОНТРОЛЬ

Промежуточный контроль и критерии оценок представлен в программе Промежуточной аттестации по дисциплинам (модулям) и практике.

Приложение

Список литературы

Тип	Книга	Количе
		ство
Основная	Марсден, Дж. Э. Математические основы механики жидкости / Дж. Э. Марсден, А.	9999
	Чорин; пер. с англ. В. Е. Зализняка; под ред. А. В. Борисова. — Москва; Ижевск:	
	Регулярная и хаотическая динамика: Институт компьютерных исследований, 2019. —	
	204 с. — URL: http://www.iprbookshop.ru/92048.html (дата обращения: 31.01.2023). —	
	Текст (визуальный): электронный.	
Основная	Огородников, В. А. Вязкость и ее роль в динамических процессах / В. А.	9999
	Огородников. — Саров, 2012. — 239 с. — URL: http://www.iprbookshop.ru/60956.html	
	(дата обращения: 31.01.2023). — Текст (визуальный) : электронный.	
Дополнител	Давыдов, А. П. Основы механики жидкости и теплотехники в системах ТГВ: учебно-	9999
ьная	методическое пособие / А. П. Давыдов, М. А. Валиуллин, З. Х. Замалеев. — Казань:	
	Казанский государственный архитектурно-строительный университет, ЭБС АСВ,	
	2019. — 91 с. — URL: https://www.iprbookshop.ru/105743.html (дата обращения:	
	02.02.2022). — Текст (визуальный) : электронный.	
Дополнител	Семенов, М. Е. Математическое моделирование физических процессов: учебное	9999
ьная	пособие / М. Е. Семенов, Н. Н. Некрасова. — Воронеж: Воронежский	
	государственный архитектурно-строительный университет, ЭБС АСВ, 2016. — 94 с.	
	— URL: http://www.iprbookshop.ru/72919.html (дата обращения: 31.01.2023). — Текст	
	(визуальный): электронный.	
Дополнител	Склярова, Е. А. Компьютерное моделирование физических явлений: учебное пособие	9999
ьная	/ Е. А. Склярова, В. М. Малютин. — Томск: Томский политехнический университет,	
	2012. — 152 с. — URL: http://www.iprbookshop.ru/34668 (дата обращения: 31.01.2023).	
	— Текст (визуальный): электронный.	