МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Алтайский государственный педагогический университет» (ФГБОУ ВО «АлтГПУ»)

УТВЕРЖДАЮ проректор по образовательной деятельности

М.О. Тяпкин

ПРЕДМЕТНО-МЕТОДИЧЕСКИЙ МОДУЛЬ "ИНФОРМАТИКА"

Математическая логика

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Математики и методики обучения математике

Учебный план ИиДО(СИИ)44.03.05-2024.plx

44.03.05 Педагогическое образование (с двумя профилями подготовки)

Квалификация бакалавр

Форма обучения очная

Общая трудоемкость 3 ЗЕТ

Часов по учебному плану 108 Виды контроля в семестрах:

в том числе: зачеты 2

 аудиторные занятия
 32

 самостоятельная работа
 74

Программу составил(и):

кфмн, доцент, Кислицин Алексей Владимирович; старший преподаватель, Малинина Марина Леонидовна

Рабочая программа дисциплины

Математическая логика

разработана на основании ФГОС ВО - бакалавриат по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки) (приказ Минобрнауки России от 22.02.2018 г. № 125)

составлена на основании учебного плана 44.03.05 Педагогическое образование (с двумя профилями подготовки) (Уровень: бакалавриат; квалификация: бакалавр), утвержденного Учёным советом ФГБОУ ВО «АлтГПУ» от 25.03.2024, протокол № 10.

Рабочая программа одобрена на заседании кафедры

Математики и методики обучения математике

Протокол № 6 от 27.02.2024 г. Срок действия программы: 20242029 уч.г. Зав. кафедрой Борисенко Оксана Викторовна

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	2 (1.2)		Итого	
Недель	21			
Вид занятий	УП РП		УП	РΠ
Лекции	16	16	16	16
Практические	16	16	16	16
Контроль самостоятельной работы	2	2	2	2
Итого ауд.	32	32	32	32
Контактная работа	34	34	34	34
Сам. работа	74 74		74	74
Итого	108	108	108	108

1.1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1.1 Обеспечение предметно-методологической подготовки как составной части профессиональной подготовки учителя математики и информатики.

	1.2. ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)
	Формирование осознанных представлений о сущности и принципах построения логико-символического языка и его предметных интерпретаций, общих принципах построения дедуктивных теорий;
1.2.2	угочнение понятия "логико-математическое доказательство";
1.2.3	раскрытие сущности аксиоматического метода в математике;
1.2.4	выявление "логической составляющей" школьного курса математики

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ					
П	Цикл (раздел) OП: K.M.07					
2.1	2.1 Требования к предварительной подготовке обучающегося:					
2.1.1	Алгебра					
2.1.2	Вводный курс математики					
2.2	2 Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:					
2.2.1	Методика обучения математике					
2.2.2	Числовые системы					

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ПК-1.1: Знает структуру, состав и дидактические единицы предметной области (преподаваемого предмета).

ПК-1.2: Умеет осуществлять отбор учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС OO.

В результате освоения дисциплины (модуля) обучающийся должен

3.1	Знать:					
3.1.1	общие принципы построения формального математического языка и построения его интерпретации;					
3.1.2	приложения логики высказываний и предикатов;					
3.1.3	современные результаты в области аксиоматического метода построения математики и приложений логики высказываний.					
3.2	Уметь:					
3.2.1	строить формальный логический вывод из аксиом;					
3.2.2	определять в конкретной интерпретации истинность высказываний сложной логической структуры;					
3.2.3	проводить равносильные преобразования логических формул;					
3.2.4	анализировать математическую речь, выделять ошибки школьников при работе с высказываниями и предикатами;					
3.2.5	анализировать и синтезировать информацию.					
3.3	Владеть:					
3.3.1	осознанными представлениями об аксиоматическом методе в математике и его разновидностях;					
3.3.2	методами проверки требований к аксиоматике дедуктивных теорий (непротиворечивость, независимость, полнота);					
3.3.3	основными средствами дедуктивного доказательства; понятием модели формальной теории, приемами применения моделей для характеризации аксиоматических теорий;					
3.3.4	способами проверки правильности логических рас-суждений, формализации и анализа информации.					

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)					
Код	од Наименование разделов и тем /вид Семестр / Часов Компетен-				Литература
занятия	тия занятия/ Курс			ции	
	Раздел 1. Логика высказываний				
1.1	Формулы алгебры высказываний. Равносильность формул /Лек/	2	2	ПК-1.1 ПК-	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Л2.6 Л2.7
	гавносильность формул / Лек/			1.2	312.3 312.7 31

1.2	Нормальные формы и их применение /Лек/	2	4	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Л2.6 Л2.7 Э1
1.3	Формальные аксиоматические теории. Доказательство в математике. /Лек/	2	4	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Э1
1.4	Высказывания. Равносильные преобразования /Пр/	2	2	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Э1
1.5	Нормальные формы и их применение /Пр/	2	4	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Э1
1.6	Приложения алгебры высказываний /Пр/	2	4	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Э1
1.7	Равносильные преобразования в алгебре высказываний. Доказательство равносильности. /Ср/	2	22	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.4 Л2.5 Э1
1.8	Приложения алгебры высказываний /Ср/	2	24	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.4 Л2.5 Э1
	Раздел 2. Алгебра предикатов				
2.1	Предикаты и операции над ними. Кванторы. /Лек/	2	2	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Э1
2.2	Некоторые виды формул в логике предикатов. Проблема разрешимости /Лек/	2	4	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Э1
2.3	Предикаты и кванторы /Пр/	2	4	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Э1
2.4	Характеризация аксиоматических теорий /Пр/	2	2	ПК-1.1 ПК- 1.2	Л1.1 Л1.2 Л1.3Л2.1 Л2.2 Л2.4 Л2.5 Э1
2.5	Работа с формулами логики предикатов: доказательство выполнимости, общезначимости различных видов формул. Интерпретации. /Ср/	2	28	ПК-1.1 ПК-1.2	Л1.1Л2.1 Л2.4 Л2.5 Э1

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Перечень индикаторов достижения компетенций, форм контроля и оценочных средств

ПК-1.1. Знает структуру, состав и дидактические единицы предметной области (преподаваемого предмета).

ПК-1.2. Умеет осуществлять отбор учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС OO.

5.2. Технологическая карта достижения индикаторов

Виды учебной работы: лекционные занятия

Формы контроля и оценочные средства:

вопросы для самоконтроля (10 баллов)

Перечень индикаторов компетенций: УК-1.2, ПК- 1.1,1.2, 3.1

Виды учебной работы: практические занятия

Формы контроля и оценочные средства:

тестовые задания (10 баллов),

вопросы к практическим занятиям (10 баллов),

Задачи к практическим занятиям (20 баллов)

Перечень индикаторов компетенций: УК-1.2, ПК- 1.1,1.2, 3.1

Виды учебной работы: самостоятельная работа

Формы контроля и оценочные средства: портфолио (5 баллов)

Контрольные работы (20 баллов)

Перечень индикаторов компетенций: УК-1.2, ПК- 1.1,1.2, 3.1

Экзамен(или диф.зачет (25 баллов)

Перечень индикаторов компетенций: УК-1.2, ПК- 1.1,1.2, 3.1

5.3. Формы контроля и оценочные средства

Вопросы для экзамена (диф.зачета)

Логика высказываний

1. Высказывания. Логические операции над высказываниями. Классификация формул логики высказываний.

Тавтологии.

- 2. Равносильность формул алгебры высказываний.
- 3. Дизъюнктивная и конъюнктивная нормальные формы. Закон двойственности. Совершенные нормальные формы.
- 4. Алфавит, система аксиом, правило вывода в исчислении высказываний.
- 5. Теорема о дедукции в исчислении высказываний. Применение теоремы о дедукции.
- 6. Лемма о выводимости. Полнота исчисления высказываний в широком смысле.
- 7. Непротиворечивость исчисления высказываний. Полнота исчисления высказываний в узком смысле.
- 8. Независимость системы аксиом исчисления высказываний.

Логика предикатов

- 9. Определение п-местного предиката. Область истинности предиката. Логические операции над предикатами.
- 10. Кванторы. Формулы логики предикатов. Обобщенные законы де Моргана.
- 11. Предваренная нормальная форма формул логики предикатов.
- 12. Проблема разрешимости в логике предикатов (Теорема Черча).
- 13. Проблема разрешимости в случае одноместных предикатов.
- 14. Применение языка логики предикатов. Теоремы: прямая, обратная, противоположная, обратная к противоположной. Методы доказательства теорем.
- 15. Алфавит. Термы. Формулы Связанные и свободные переменные исчисления предикатов. Аксиомы логические и специальные. Языки первого порядка.
- 16. Теорема о дедукции в исчислении предикатов.
- 17. Непротиворечивость и полнота исчисления предикатов в широком смысле без специальных аксиом. Теорема Геделя. Отсутствие полноты исчислений высказываний в узком смысле в исчислении предикатов.

Примеры заданий и задач для самостоятельной работы

- 1. Составьте формулу из 3 высказывательных переменных и двух операций и заполните для нее таблицу истинности.
- 2. Проверьте составленную формулу на тождественную истинность, тождественную ложность, выполнимость по алгоритму.
- 3. Проверьте равносильность формул
- 4. Проверьте правильность рассуждений:
- а) Прямые а и b или параллельны или пересекаются, или скрещиваются. Прямые а и b лежат в од-ной плоскости и не пересекаются. Если ab лежат в одной плоскости, то они не скрещиваются. Следовательно, а и b не параллельны.
- б) Если целое число больше 1, то оно простое или составное. Если целое число больше 2, то оно больше 1. Если целое число больше 2 и четное, то оно не простое. Целое число больше 2 и четное. Следовательно, оно составное.
- 5.Высказыванием не является:
- 1) Уравнение ах+у =0 разрешимо на множестве натуральных чисел
- 2) Число х больше у
- 3) X+Y=8
- 4) $x \ge y$ на множестве целых чисел
- 5) $3 \le x$
- б) 77 кратно х
- 7) 33х=у задает степенную функцию.
- 8) отношение делимости есть отношение порядка.
- 9) уравнение 3x + y = 8 разрешимо.
- 10) уравнение 3x + y = 8 разрешимо на множестве целых чисел.
- 11) 536 делится на у
- 12) Равенство x + y = 15 для целых чисел.
- 13) 15 ≤ у на множестве рациональных чисел
- 14) 77 кратно у на множестве целых чисел.
- 15) х простое число
- 16) Целое число делится на 3, если сумма его цифр делится на 3.
- 3.2. Примеры тестовых заданий:
- 1. Сложное высказывание, состоящее из двух высказываний и истинное тогда и только тогда, когда оба составляющих высказывания истинны, называется
- 1) дизъюнкцией 2) импликацией 3) конъюнкцией 4) контрапозицией.
- 2. Сложное высказывание, состоящее из двух высказываний и ложное тогда и только тогда, когда оба составляющих высказывания ложны, называется
- 1) дизъюнкцией 2) импликацией 3) отрицанием 4) контрапозицией.
- 3. Сложное высказывание, состоящее из двух высказываний и ложное тогда и только тогда, когда первое из составляющих

высказываний истинно, а второе ложно, называется

1) дизъюнкцией 2) импликацией 3) конъюнкцией 4) контрапозицией.

5.4. Оценка результатов обучения в соответствии с индикаторами достижения компетенций

Неудовлетворительно.: не достигнут

Удовлетворительно. Пороговый уровень: знает логические нормы математического языка, основные законы логики; аксиомы, теоремы, определения аксиоматического метода построения математических теорий; формулировки теорем теории, средства интеграции решений с объединением их в единую систему, а также методы объективного анализа различных вариантов их применения; технологии построения ИТ процессов. Умеет логически грамотно конструировать математические предложения и определения, анализировать их логическое строение, записывать символически и наоборот; распознавать, равносильны ли предложения и является ли одно следствием другого; преобразовывать отрицание предложений, опровергать общие утверждения с помощью контрпримеров; строить обратное предложение; применять определения и теоремы теории, проводить ведение базы данных и поддерживать информационное обеспечение решения прикладных задач; применять методики экономического анализа ИТ; разрабатывать бизнес-план . Владеет логическими нормами математического языка; методами решения элементарных задач по дисциплине «Теория алгоритмов и математическая логика». Навыками выбора класса ИС при настройке автоматизации предприятия; способами выбора ИС с анализом преимуществ каждого конкретного перед другими; способами организации стратегического и оперативного планирования ИС.

Хорошо. Базовый уровень: знает логические нормы математического языка, основные законы логики; логические правила построения математических рассуждений (доказательств); аксиомы, теоремы, определения аксиоматического метода построения математических теорий; определения и аксиоматического метода построения математических теорий; теоремы теории графов с идеями доказательства; средства интеграции решений с объединением их в единую систему, а также методы объективного анализа различных вариантов их применения; технологии построения ИТ процессов, методологию анализа, современные подходы к улучшению ИТ систем. Умеет логически грамотно конструировать математические предложения (в том числе теоремы) и определения, анализировать их логическое строение, записывать символически и наоборот, переводить символическую запись на естественный язык; распознавать, равносильны ли предложения и является ли одно следствием другого; преобразовывать отрицание предложений, опровергать общие утверждения с помощью контрпримеров; переходить от безусловной формы теоремы к ее условной форме и наоборот; строить обратное предложение: формулировать теорему в терминах «необходимо», «достаточно»; распознавать правильные и неправильные рассуждения; применять определения и теоремы теории графов при решении задач; проводить ведение базы данных и поддерживать информационное обеспечение решения прикладных задач; применять методики экономического анализа ИТ; разрабатывать бизнес-план, проводить анализ и систематизацию разнородных данных. Владеет логическими нормами математического языка; логическими методами доказательства; методами решения задач по дисциплине «Теория алгоритмов и математическая логика»; навыками выбора класса ИС при настройке автоматизации предприятия; способами выбора ИС с анализом преимуществ каждого конкретного перед другими; способами организации стратегического и оперативного планирования ИС, навыками поиска и работы с источниками информации; методиками принятия решений. Отлично. Высокий уровень: Знает логические нормы математического языка, основные законы логики; логические правила построения математических рассуждений (доказательств); сугь аксиоматического метода построения математических теорий и его компонентов: аксиом, теорем, определений, доказательств; определений; средства интеграции решений с объединением их в единую систему, а также методы объективного анализа различных вариантов их применения; технологии построения ИТ процессов, методологию анализа, современные подходы к улучшению ИТ систем, основные методы анализа информации и системного подхода для решения профессиональных задач. Умеет логически грамотно конструировать математические предложения (в том числе теоремы) и определения, анализировать их логическое строение, записывать символически и наоборот, переводить символическую запись на естественный язык; распознавать, равносильны ли предложения и является ли одно следствием другого; преобразовывать отрицание предложений, опровергать общие утверждения с помощью контрпримеров; переходить от безусловной формы теоремы к ее условной форме и наоборот; строить обратное предложение; формулировать теорему в терминах «необходимо», «достаточно»; анализировать логическое строение элементарных рас суждений, распознавать правильные и неправильные рассуждения; применять определения, теоремы теории графов и идеи их доказательства при решении задач; проводить ведение базы данных и поддерживать информационное обеспечение решения прикладных задач; применять методики экономического анализа ИТ; разрабатывать бизнес-план, проводить анализ и систематизацию разнородных данных и проводить оценку эффективности процедур анализа проблем внутри профессиональной деятельности. Владеет логическими нормами математического языка; логическими методами доказательства; методами решения прикладных задач математической логики; навыками выбора класса ИС при настройке автоматизации предприятия; способами выбора ИС с анализом преимуществ каждого конкретного перед другими; способами организации стратегического и оперативного планирования ИС, навыками поиска и работы с источниками информации; методиками принятия решений.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

6.1. Рекомендуемая литература

6.1.1. Основная литература

	Авторы, составители	Издание	Экз.
Л1.1	Б. Д. Пайсон; Барнаульский государственный педагогический университет	Математическая логика: учебное пособие для студентов математических специальностей педагогических вузов — Барнаул, 2006	41
Л1.2	Северо-Кавказский федеральный университет; сост.: А. Н. Макоха [и др.]	Математическая логика и теория алгоритмов: учебное пособие — Ставрополь: СКФУ, 2017 — URL: http://www.iprbookshop.ru/69397.html	9999
Л1.3	С. А. Унучек	Математическая логика: учебное пособие — Саратов : Ай Пи Эр Медиа, 2018 — URL: http://www.iprbookshop.ru/69312.html	9999
		6.1.2. Дополнительная литература	•
	Авторы, составители	Издание	Экз.
Л2.1	Ю. Л. Ершов, Е. А. Палютин	Математическая логика: учебное пособие для студентов математических специальностей вузов — СПб. : Лань, 2005	20
Л2.2	В. И. Игошин	Математическая логика и теория алгоритмов: учебное пособие для студентов [технических, педагогических] вузов — М.: Академия, 2008	20
Л2.3	Л. М. Лихтарников, Т. Г. Сукачева	Математическая логика: курс лекций: задачник-практикум и решения: учебное пособие [для студентов университетов и педагогических вузов] — СПб: Лань, 2008	25
Л2.4	И. А. Лавров, Л. Л. Максимова	Задачи по теории множеств, математической логике, теории алгоритмов: [учебное пособие для математических факультетов университетов, педагогических институтов, технических вузов] — Москва : ФИЗМАТЛИТ, 2009	25
Л2.5	А. В. Кислицин, М. Л. Малинина; Алтайский государственный педагогический университет	Приложения алгебры высказываний в математической логике: учебнометодическое пособие — Барнаул : АлтГПУ, 2018 — URL: https://library.altspu.ru/dc/pdf/kislicin1.pdf	9999
Л2.6	А. В. Кислицин, М. Л. Малинина; Алтайский государственный педагогический университет	Приложения алгебры высказываний в математической логике: учебнометодическое пособие — Барнаул: АлтГПУ, 2018	20
Л2.7	Э. Л. Балюкевич, Л. Ф. Ковалева	Математическая логика и теория алгоритмов: учебное пособие — Москва : Евразийский открытый институт, 2009 — URL: http://www.iprbookshop.ru/10772	9999
	6.2. Переч	ень ресурсов информационно-телекоммуникационной сети "Интернет"	
Э1			
	I	6.3.1 Перечень программного обеспечения	
6.3.1.1	Пакет LibreOffice		
6.3.1.2	Программа 7zip		
6.3.1.3	Пакет Kaspersky Endp	oint Security 10 for Windows	
6.3.1.4	Редактор изображений	й Gimp	
		6.3.2 Перечень информационных справочных систем	

	7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
7.1	Оборудованные учебные аудитории, в том числе с использованием мультимедийных комплектов, подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду Университета.
	Аудитории для самостоятельной работы с подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду Университета.
7.3	

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

При освоении дисциплины предполагается вовлечение студента в следующие виды учебной деятельности: На аудиторных занятиях: прослушивание лекций; диалоговое взаимодействие по те-матике дисциплины.

При осуществлении самостоятельной работе: подготовка к практическим занятиям по предлагаемой тематике; выполнение контрольной работы, подготовка к тестовому срезу знаний.

При проведении консультаций: диалоговое взаимодействие с преподавателем по тематике дисциплины. Текущий контроль: презентация готовности по темам практических занятий;

участие в контрольном срезе на основе выполнения контрольной работы и выполнения тестовых заданий. Готовясь к лекционным и практическим занятиям по предмету, контрольным работам нужно ориентироваться на вопросы для самоконтроля.

Решая упражнения необходимо изучать образцы решенных задач, представленные в лекциях и учебном пособии. Также важно своевременное выполнение индивидуальных заданий, домашних самостоятельных работ. Индивидуальные задания выполняются в отдельной тетради. После проверки преподавателем необходимо исправить ошибки. Результаты исправления обсуждаются с преподавателем во время консультации. Для успешного прохождения курса нужно изучить лекции, выставленные в расширенном курсе математической логики в системе «Moodle», выполнить тесты в той же системе.

Методические рекомендации для обучающихся (с OB3)

Под специальными условиями для получения образования обучающимися с ограниченными возможностями здоровья понимаются условия обучения, воспитания и развития, включающие в себя использование специальных образовательных программ и методов обучения и воспитания, специальных учебников, учебных пособий и дидактических материалов, специальных технических средств обучения коллективного и индивидуального пользования. Построение образовательного процесса ориентировано на учет индивидуальных возрастных, психофизических особенностей обучающихся, в частности предполагается возможность разработки индивидуальных учебных планов. Реализация индивидуальных учебных планов сопровождается поддержкой тьютора (родителя, взявшего на себя тьюторские функции в процессе обучения, волонтера). Обучающиеся с ОВЗ, как и все остальные студенты, могут обучаться по индивидуальному учебному плану в установленные сроки с учетом индивидуальных особенностей и специальных образовательных потребностей конкретного обучающегося. При составлении индивидуального графика обучения для лиц с ОВЗ возможны различные варианты проведения занятий: проведение индивидуальных или групповых занятий с целью устранения сложностей в усвоении лекционного материала, подготовке к семинарским занятиям, выполнению заданий по самостоятельной работе. Для лиц с ОВЗ, по их просьбе, могут быть адаптированы как сами задания, так и формы их выполнения. Выполнение под руководством преподавателя индивидуального проектного задания, позволяющего сочетать теоретические знания и практические навыки; применение мультимедийных технологий в процессе ознакомительных лекций и семинарских занятий, что позволяет экономить время, затрачиваемое на изложение необходимого материала и увеличить его объем. Для осуществления процедур текущего контроля успеваемости и промежуточной аттестации преподаватели, в соответствии с потребностями студента, отмеченными в анкете, и рекомендациями специалистов дефектологического профиля, разрабатывает фонды оценочных средств, адаптированные для лиц с ограниченными возможностями здоровья и позволяющие оценить достижение ими запланированных в основной образовательной программе результатов обучения и уровень сформированности всех компетенций, заявленных в образовательной программе. Форма проведения текущей аттестации для студентов с ОВЗ устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.). Лицам с ОВЗ может быть предоставлено дополнительное время для подготовки к ответу на экзамене, выполнения задания для самостоятельной работы. При необходимости студент с ограниченными возможностями здоровья подает письменное заявление о создании для него специальных условий в Учебно-методическое управление Университета с приложением копий документов, подтверждающих статус инвалида или лица с ОВЗ.