МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Алтайский государственный педагогический университет» (ФГБОУ ВО «АлтГПУ»)

УТВЕРЖДАЮ проректор по учебной работе и международной деятельности

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ТЕОРИЯ ГРАФОВ И МАТЕМАТИЧЕСКАЯ ЛОГИКА

Код, направление подготовки (специальности): 01.03.04 Прикладная математика

Профиль (направленность): Форма контроля в семестре, в том

числе курсовая работа Катематическое моделирование и обра- зачет с оценкой 4

Математическое моделирование и обработка данных

Квалификация:

бакалавр

Форма обучения:

очная

Общая трудоемкость (час / з.ед.):

108 / 3

Программу составил:

Кислицин А.В., доцент кафедры математики и методики обучения математике, канд. физ.-мат. наук, доцент

Программа подготовлена на основании учебного плана в составе ОПОП 01.03.04 Прикладная математика: Математическое моделирование и обработка данных утвержденного Ученым советом ФГБОУ ВО «АлтГПУ» от «29» марта 2021 г., протокол N 7.

Программа принята:

Зав. кафедрой: Борисенко О.В., доцент кафедры математики и методики обучения математике, кандидат пед.наук, доцент

1. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цель: изучение основ математической логики, научить студента пользоваться символикой математической логики и познакомить его с аксиоматическим методом в математике, изучение основ теории графов.

Задачи:

- изложить алгебру высказываний;
- познакомить студента с приложениями алгебры высказываний (логические рассуждения и решение логических задач, теория множеств, релейно-контактные схемы);
- изложить исчисление высказываний;
- познакомить студента с алгебраическими системами и с алгеброй предикатов, доказать теорему о предварённой нормальной форме для формул алгебры предикатов;
- познакомить студента с исчислением предикатов;
- познакомить студента с теоремой Эйлера о плоских графах, ее следствиями, двудольными графами, критерием эйлеровости графа и теоремой Дирака о гамильтоновых графах;
- изучить свойства деревьев и теорема Кэли о числе помеченных деревьев фиксированного порядка;
- рассмотреть экстремальные задачи, алгоритм Краскале, задачу о четырех красках;
- рассмотреть потоки в сетях теорема Холла о представителях.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

2.1. Требования к предварительной подготовке обучающегося:

математика;

вводный курс математики.

2.2. Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

современные вопросы информатики

3. КОМПЕТЕНЦИИ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- УК-1. Способность осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.
- ОПК-1. Способность применять знание фундаментальной математики и естественно-математических дисциплин при решении задач в области естественных наук и инженерной практике.
- ОПК-2. Способность обоснованно выбирать, дорабатывать и применять для решения исследовательских и проектных задач математические методы и модели, осуществлять проверку адекватности моделей, анализировать результаты, оценивать надежность и качество функционирования систем.

4. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ ОБУЧАЮЩИМСЯ

Индикаторы достижения компе-	Результаты обучения по дисциплине
тенции	
ИУК - 1.1. Ставит и анализи-	Знает: булевы функции, приложения алгебры высказы-
рует задачу, выделяя ее базовые	ваний к релейно-контактным схемам, к логическим рас-
составляющие	суждениям, исчисление высказываний, основные поня-
ИОПК-1.1. Демонстрирует зна-	тия об алгебраических системах, алгебру предикатов, ос-
ния основ фундаментальной ма-	новные понятия теории графов (связность, планарность,
тематики и естественно-матема-	гамильтоновость), формулировки основных теорем
тических дисциплин	курса.

ИОПК 2.1. обоснованно выбирает для решения исследовательских и проектных задач математические методы и модели

Умеет: находить СДФН и СКНФ, применять алгебру высказываний к логическим рассуждениям и к релейноконтактным схемам, решать логические задачи с помощью алгебры высказываний, приводить формулы логики предикатов к нормальному виду, доказывать теоремы Эйлера о планарности графа и эйлеровости графа, теорему Дирака (критерий гамильтоновости), теорему Кэли о числе помеченных деревьев, различные критерии того, что граф является деревом, применять алгоритм Краскаля и алгоритм Флери.
Владеет: математическим аппаратом для решения по-

Владеет: математическим аппаратом для решения поставленных задач, владеть способностью применять соответствующую процессу математическую модель и проверить ее адекватность.

5. ОБЪЕМ ДИСЦИПЛИНЫ И РАСПРЕДЕЛЕНИЕ ВИДОВ УЧЕБНОЙ РАБОТЫ ПО СЕМЕСТРАМ

Профиль (направленность)	Се-местр	Всего	Количество часов по видам учебной работы					
			Лек.	Практ.	КСР	Сам. работа	Зачет	
Математическое моделирование и обработка данных	4	108	18	30	4	56		
Итого	•	108	48	30	4	56		

6. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

№	Раздел / Тема	Содержание	Количество часов			
			Лекц.	Практ.	Сам. работа	
		Семестр 2				
		Раздел 1. Элементы математической ло	гики			
1.1.	Алгебра вы- сказываний	Высказывания и логические операции. Логические формулы. Высказывания и логические операции. Истинность высказываний. Равносильность формул алгебры высказываний. Основные равносильности алгебры высказываний. Доказательство и опровержение равносильности высказываний. Преобразование формул алгебры высказываний. Закон двойственности. Нормальные формы формул алгебры высказываний. Приложение алгебры высказываний. Релейно-контактные схемы.	6	8	15	
1.2.	Логика пре- дикатов	Предикаты и кванторы. Свободные и связанные переменные. Общие и частные утверждения. Истинность и ложность	4	8	15	

	Итого		18	30	60
	Зачет		0	0	0
		фов.			
		в сетях. Прикладные задачи теории гра-			
		каля. Теорема о целочисленности. Потоки			
	рии графов	дача о четырех красках. Алгоритм Крас-			
	задачи тео-	Экстремальные задачи теории графов. За-			
2.2.	Некоторые	Оценка числа графов. Раскраска графов.	4	6	15
		графы. Деревья.			
	трафы	графы. Эйлеровы графы. Гамильтоновы			
2.1.	графы	кие графы. Теорема Эйлера. Двудольные	•	U	13
2.1.	Плоские	Основные понятия теории графов. Плос-	4	8	15
		Раздел 2. Элементы теории графов	?		
		исчисления предикатов/			
		Предваренная нормальная форма формул			
		дикатов. Кванторные законы логики.			
		истинности предиката. Выполнимость и общезначимость формул исчисления пре-			
		Операции над множествами. Множество			
		Подмножество. Равенство множеств.			
		высказываний с кванторами. Множество.			

7. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ РАБОТ:

Не предусмотрена.

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ: Приложение 1.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ:

9.1. Рекомендуемая литература: Приложение 2.

9.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»:

Ткаченко С. В. Математическая логика: учеб. пособие [Электронный ресурс]/ А.С. Сысоев, С.В. Ткаченко. - Липецк: ЛГТУ, 2013. - Режим доступа: http://rucont.ru/efd/302166

9.3. Перечень программного обеспечения:

- 1. Пакет Microsoft Office.
- 2. Пакет LibreOffice.
- 3. Пакет OpenOffice.org.
- 4. Операционная система семейства Windows.
- 5. Операционная система Linux.
- 6. Интернет браузер.
- 7. Программа для просмотра электронных документов формата pdf, djvu.
- 8. Медиа проигрыватель.
- 9. Программа 7zip
- 10. Пакет Kaspersky Endpoint Security 10 for Windows
- 11. Редактор изображений Gimp.

9.4. Перечень профессиональных баз данных и информационных справочных систем: Приложение 3

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ:

- 1. Оборудованные учебные аудитории, в том числе с использованием видеопроектора и подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду Университета.
- 2. Аудитории для самостоятельной работы с подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду Университета.
- 3. Компьютерный класс с подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду Университета.

11. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ:

- 1. Работать с рекомендованной лектором учебно-методической литературой.
- 2.Посещение лекционных и практических занятий не является достаточным условием усвоения курса. Необходима активная самостоятельная работа.
- 3. При подготовке к очередному лекционному занятию следует в целом восстановить (повторить) материал предыдущей лекции (по собственным записям или по соответствующему учебнику). Такой уровень усвоения материала подразумевает знание определений основных понятий и формулировок основных утверждений. Желательно также заполнить пробелы предыдущей лекции: ответить на поставленные во время ее чтения вопросы; выполнить упражнения; восстановить доказательства или их фрагменты утверждений.

Методические рекомендации для обучающихся (с OB3)

Под специальными условиями для получения образования обучающимися с ограниченными возможностями здоровья понимаются условия обучения, воспитания и развития, включающие в себя использование специальных образовательных программ и методов обучения и воспитания, специальных учебников, учебных пособий и дидактических материалов, специальных технических средств обучения коллективного и индивидуального пользования. Построение образовательного процесса ориентировано на учет индивидуальных возрастных, психофизических особенностей обучающихся, в частности предполагается возможность разработки индивидуальных учебных планов. Реализация индивидуальных учебных планов сопровождается поддержкой тьютора (родителя, взявшего на себя тьюторские функции в процессе обучения, волонтера). Обучающиеся с ОВЗ, как и все остальные студенты, могут обучаться по индивидуальному учебному плану в установленные сроки с учетом индивидуальных особенностей и специальных образовательных потребностей конкретного обучающегося. При составлении индивидуального графика обучения для лиц с ОВЗ возможны различные варианты проведения занятий: проведение индивидуальных или групповых занятий с целью устранения сложностей в усвоении лекционного материала, подготовке к семинарским занятиям, выполнению заданий по самостоятельной работе. Для лиц с ОВЗ, по их просьбе, могут быть адаптированы как сами задания, так и формы их выполнения. Выполнение под руководством преподавателя индивидуального проектного задания, позволяющего сочетать теоретические знания и практические навыки; применение мультимедийных технологий в процессе ознакомительных лекций и семинарских занятий, что позволяет экономить время, затрачиваемое на изложение необходимого материала и увеличить его объем.

Для осуществления процедур текущего контроля успеваемости и промежуточной аттестации преподаватели, в соответствии с потребностями студента, отмеченными в анкете, и рекомендациями специалистов дефектологического профиля, разрабатывает фонды оценочных средств, адаптированные для лиц с ограниченными возможностями здоровья и позволяющие оценить достижение ими запланированных в основной образовательной программе результатов обучения и уровень сформированности всех компетенций, заявленных в образовательной программе. Форма проведения текущей аттестации для студентов с ОВЗ устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.). Лицам с ОВЗ

может быть предоставлено дополнительное время для подготовки к ответу на экзамене, выполнения задания для самостоятельной работы.

При необходимости студент с ограниченными возможностями здоровья подает письменное заявление о создании для него специальных условий в Учебно-методическое управление Университета с приложением копий документов, подтверждающих статус инвалида или лица с OB3.

Список литературы

Код: 01.03.04

Образовательная программа: Прикладная математика: Математическое моделирование и

обработка данных

Учебный план: ПМ01.03.04_2021.plx

Дисциплина: Теория графов и математическая логика Кафедра: Математики и методики обучения математике

Тип	Книга	Количе ство
Основная	Лавров И. А. Математическая логика: учебное пособие для студентов вузов, обучающихся по техническим и естественно-научным специальностям / И. А. Лавров ; под ред. Л. Л. Максимовой. — М.: Академия, 2006. — 240 с.: ил.	
Основная	Пайсон Б. Д. Математическая логика: учебное пособие для студентов математических специальностей педагогических вузов / Б. Д. Пайсон; Барнаульский государственный педагогический университет. — Барнаул, 2006. — 167 с.	
Дополнит ельная	Балюкевич Э. Л. Математическая логика и теория алгоритмов [Электронный ресурс]: учебное пособие / Э. Л. Балюкевич, Л. Ф. Ковалева. — Москва: Евразийский открытый институт, 2009. — 188 с. — URL: http://www.iprbookshop.ru/10772.	9999
Дополнит ельная	Ершов Ю. Л. Математическая логика: учебное пособие для студентов математических специальностей вузов / Ю. Л. Ершов, Е. А. Палютин. — СПб.: Лань, 2005. — 336 с.	20
Дополнит ельная	Игошин В. И. Задачник-практикум по математической логике: учебное пособие для студентов-заочников физико-математических факультетов педагогических институтов / В. И. Игошин; Московский государственный заочный педагогический институт. — Москва: Просвещение, 1986. — 159 с.	97
Дополнит ельная	Игошин В. И. Математическая логика и теория алгоритмов: учебное пособие для студентов [технических, педагогических] вузов / В. И. Игошин. — М.: Академия, 2008. — 447 с.: ил.	20
Дополнит ельная	Кислицин А. В. Приложения алгебры высказываний в математической логике [Электронный ресурс]: учебно-методическое пособие / А. В. Кислицин, М. Л. Малинина; Алтайский государственный педагогический университет. — Барнаул: АлтГПУ, 2018. — 67 с.: ил. — URL: http://library.altspu.ru/dc/pdf/kislicin1.pdf.	9999
Дополнит ельная		
Дополнит ельная	Лавров И. Н. Задачи по теории множеств, математической логике, теории алгоритмов: [учебное пособие для математических факультетов университетов, педагогических институтов, технических вузов] / И. Н. Лавров, Л. Л. Максимова. — М.: ФИЗМАТЛИТ, 2009. — 255 с.	25
Дополнит ельная	Лихтарников Л. М. Математическая логика: курс лекций: задачник-практикум и решения: учебное пособие [для студентов университетов и педагогических вузов] / Л. М. Лихтарников, Т. Г. Сукачева. — СПб: Лань, 2008. — 276 с.	25
Дополнит ельная	Чеботарёв С. В. Элементы дискретной математики: учебное пособие [для студентов 1 курса физического факультета] / С. В. Чеботарев ; Барнаульский государственный педагогический университет. — Барнаул, 2005. — 175 с.: ил.	9

	Согласовано:
Преподаватель	(подпись, И.О. Фамилия)
Заведующий кафедрой	(подпись, И.О. Фамилия)
Отнал кингообооному и ИПЕ А та ГПУ	(полица ИО фомица)